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NRXN1 deletions identified by array comparative
genome hybridisation in a clinical case series –
further understanding of the relevance of NRXN1
to neurodevelopmental disorders
Sarah Curran1*, Joo Wook Ahn2, Hannah Grayton3, David A Collier3 and Caroline Mackie Ogilvie2
Abstract

Background: Microdeletions in the NRXN1 gene have been associated with a range of neurodevelopmental
disorders, including autism spectrum disorders, schizophrenia, intellectual disability, speech and language delay,
epilepsy and hypotonia.

Results: In the present study we performed array CGH analysis on 10,397 individuals referred for diagnostic
cytogenetic analysis, using a custom oligonucleotide array, which included 215 NRXN1 probes (median spacing
4.9 kb). We found 34 NRXN1 deletions (0.33% of referrals) ranging from 9 to 942 kb in size, of which 18 were exonic
(0.17%). Three deletions affected exons also in the beta isoform of NRXN1. No duplications were found. Patients
had a range of phenotypes including developmental delay, learning difficulties, attention deficit hyperactivity
disorder (ADHD), autism, speech delay, social communication difficulties, epilepsy, behaviour problems and
microcephaly. Five patients who had deletions in NRXN1 had a second CNV implicated in neurodevelopmental
disorder: a CNTNAP2 and CSMD3 deletion in patients with exonic NRXN1 deletions, and a Williams-Beuren
syndrome deletion and two 22q11.2 duplications in patients with intronic NRXN1 deletions.

Conclusions: Exonic deletions in the NRXN1 gene, predominantly affecting the alpha isoform, were found in
patients with a range of neurodevelopmental disorders referred for diagnostic cytogenetic analysis. The targeting of
dense oligonucleotide probes to the NRXN1 locus on array comparative hybridisation platforms provides detailed
characterisation of deletions in this gene, and is likely to add to understanding of the importance of NRXN1 in
neural development.

Keywords: Copy number variants, Autism spectrum disorders, NRXN1, Neurodevelopmental disorders, Epilepsy,
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Background
Neurexin 1 (NRXN1; 2p16.3) is a member of a small family
of proteins, which also includes neurexin 2 and neurexin 3,
originally identified as synaptic transmembrane receptors
for the black-widow spider toxin α-latrotoxin [1]. Neurexins
play a role in synapse maturation by fine-tuning synaptic
properties and regulating synaptic transmission through
interaction with neuroligins [2] and mediate trans-synaptic
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interactions that help to shape the synapse [3]. Each
neurexin gene (NRXN1-3) produces two major isoforms,
α- and β-, with different extracellular but similar intracellu-
lar and transmembrane structures [4]. α-NRXNs, which act
as synaptic organisers, have six LNS (Laminin G, NRXN,
Sex-hormone-binding globulin) domains, with three interca-
lated epidermal growth factor (EGF)-like domains and have
been shown to interact with neurexophilins [5] and
LRRTM proteins [6], as well as regulating some calcium
channels [7]; β-NRXNs have a single LNS domain, lack
EGF-like sequences and contain fewer laminin G domains
[8]. Nrxn1 also undergoes extensive alternative splicing,
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which is temporally and spatially controlled by neuronal
activity via calcium/calmodulin-dependent kinase IV
signalling [9].
Deletions within NRXN1 have been identified in individ-

uals diagnosed with a range of neurodevelopmental disor-
ders (NDD): including intellectual disability, developmental
delay, speech and language delay [10,11] autism spectrum
disorders (ASD) [12-17] schizophrenia [18-21], and when
homozygously deleted, early-onset epilepsy [22] or Pitt-
Hopkins-like Syndrome [23]. A family with NRXN1 dele-
tions, schizophrenia and type 1 diabetes has been described
[24], which is plausible because neurexin 1 is expressed in
β -cells of pancreas [25]. Although deletions in NRXN2
have not been reported, rare deletions in NRXN3 have
been identified in ASD [26].
The above studies have mainly focused on the detection

of CNVs in groups of patients with specific phenotypes.
However, it is increasingly recognised that NRXN1
deletions may be risk factors for a variety of clinical
disorders. In the present study, we report intragenic
NRXN1 deletions detected during diagnostic cytogenetic
testing of sequential referrals using a custom aCGH
platform including dense coverage of the NRXN1 locus,
and describe the phenotype of these patients and the
size and position of their deletions.

Materials
Diagnostic referral cases
The tested cohort consisted of patients referred to Guy’s
and St Thomas NHS Foundation Trust from regional
paediatricians and other health specialists, as well as
from genetics centres both in and outside the region
(SE Thames). Array CGH analysis was initiated to deter-
mine the causes of developmental delay, neurocognitive
disability, learning difficulties, behavioural abnormalities
or birth defects or to confirm a clinical diagnosis of a
suspected syndrome. All patient tests were carried out as
part of standard clinical care, either as clinical referrals for
array CGH testing following a normal karyotype, or those
having array CGH as a first-line test in place of karyotyping.
All data were anonymised.

Array CGH analysis
Testing was carried out at a regional cytogenetics CPA
accredited laboratory, according to published protocols
[27], using an Agilent oligonucleotide 60 K array platform
(designs 028469 and 017457) with a total imbalance
detection rate of 24%. There are 215 NRXN1 probes on
the array, with a median spacing of 4.9 kb.
Genomic data and referral phenotype information was

recorded in a clinical database, which at the time of
analysis contained 10,397 clinical referrals, including 1368
patients referred for ASD, 360 of whom were female.
Copy number variants in this population are available
in the Brain and Body Genetics Resource Exchange
(BB-GRE; bbgre.org).

Results and discussion
We found 34/10,397 patients with deletions within
NRXN1 (0.33% of referrals). The majority of these were
within the region of the gene encoding the alpha isoform
but two included exons which are part of one of the beta
isoforms of NRXN1 (exons numbered 19–24 in the
present study). Details of patients and deletions are shown
in Table 1, and the positions of the deletions with respect
to the exons are shown in Figure 1. The frequency of
deletion of each exon is shown in Figure 2. Eighteen of the
patients in the present study had at least one exon deleted
(0.17%); the first three exons were deleted in seven patients,
all with NDD. Patients 10–16 had deletions including exon
4, the most commonly deleted exon; five of these patients
had NDD. Patient 16 had a deletion of exon 4 alone and
had no noted neurodevelopmental problems, although
the age at presentation (see Table 1) was such that
neurobehavioural problems would not yet be evident. There
is evidence that exon 4 is not expressed in murine brain
tissue and therefore isoforms of NRXN1 including exon 4
may not impact on neurodevelopment [28]. We found de-
letions in more distal exons, from 6 to 19, in patients with
developmental delay, autism or severe speech delay. The
three patients with deletions of exons which also form part
of the beta isoform of NRXN1 (patients 1 [Developmental
delay], and 34 [Developmental delay], autism) did not have
unusual referral phenotypes. As noted below, patient 34
also has a second potentially pathogenic CNV.
NDDs were present in 27 out of the 34 patients, and

included developmental delay, learning difficulties, ADHD,
autism, speech delay, social communication difficulties,
epilepsy, behaviour problems and microcephaly; of
the remaining seven patients, five were below the age
of 1 year, and would not necessarily be expected to
present with such clinical features; follow-up studies
on these children may provide further information,
Sixteen of the patients had intronic deletions, two
with deletions within intron 3 (one with NDD) and ten
with intron 5 deletions (seven with NDD). Two of our
subjects (19 and 29), both with deletions in intron 5, had
cardiac defects. Three patients with intronic deletions had
other, syndromic imbalances (Williams-Beuren syndrome
(patient 17) and 22q11.2 duplication syndrome (patients
28 and 30)). Patient 11 (exons 4–5 deletion) also had a
paternally inherited CNTNAP2 deletion and patient 34
(exon 19 deletion) had an intragenic deletion of CSMD3.
Two other patients (4 and 12) carried additional copy
number variants of uncertain significance.
Our present study describes a large series of NRXN1

deletions identified through a clinical genetics service.
This data adds to the understanding of the genotype/



Table 1 Deletions in the NRXN1 gene in clinical referrals for array CGH analysis in the present study

Patient Start
(hg19)

Stop
(hg19)

Size
(kb)

Exons Inheritance Other imbalances Referral indication Age
(yrs)

1 50,318,520 51,260,612 942 1-20 Paternal - Developmental delay 3

2 51,116,137 51,260,612 144 1-5 De novo - Developmental delay, failure to thrive,
pulmonary stenosis, hearing disorder,
microcephaly, short stature, ?Noonan
syndrome

1

3 51,205,906 51,260,612 55 1-3 N.A. - Learning difficulties 9

4 51,245,074 51,260,612 16 1-3 N.A. 13q31.1(85,376,208-86,370,409)x1 ADHD, learning disability 41

5 51,245,074 51,260,612 16 1-3 N.A. - Developmental delay 4

6 51,251,498 51,260,612 9 1-3 N.A. - Delayed (atypical) cognitive
development, speech & language
development disorder, motor skills
development disorder

1

7 51,251,498 51,260,612 9 1-3 N.A. - Marked developmental delay,
marked hypotonia (generalised),
hypoplastic nails

2

8 51,221,421 51,230,518 9 (intron 3) N.A. - ?Peutz-Jegher syndrome 11

9 51,180,561 51,199,026 18 (intron 3) N.A. - Developmental delay, autism 2

10 50,850,691 51,153,106 302 4-7 N.A. - Developmental delay, speech delay 3

11 50,957,455 51,199,026 242 4-5 De novo 7q35(145,650,395-146,558,801)x1
pat (CNTNAP2)

Early-onset epilepsy, myoclonic seizures,
speech delay

5

12 50,937,444 51,166,725 229 4-5 Maternal 14q21.1(41,234,592-41,532,307)x1
mat

Developmental delay 6

13 51,037,104 51,153,106 116 4-5 N.A. - Developmental delay, epilepsy,
dystonia, microcephaly, squint

2

14 51,037,104 51,153,106 116 4-5 N.A. - Autism 7

15 51,072,302 51,172,182 100 4-5 N.A. - Amenorrhoea, premature ovarian failure 32

16 51,153,052 51,189,385 36 4 N.A. - Anterior anus 0

17 50,902,782 51,148,567 246 (intron 5) Maternal 7q11.23(72,700,414-73,777,326)x1
(Williams Beuren syndrome)

Developmental delay, microcephaly,
behaviour problems

4

18 51,008,023 51,122,150 114 (intron 5) N.A. - Developmental delay, speech delay,
small mouth, microcephaly

10

19 51,075,491 51,148,567 73 (intron 5) N.A. - Congenital heart defect 0

20 51,043,498 51,109,749 66 (intron 5) N.A. - Developmental delay, speech delay,
social communication difficulties

3

21 51,043,498 51,088,201 45 (intron 5) N.A. - Behavioural problems 6

22 51,021,452 51,049,704 28 (intron 5) N.A. - Autism, moderate learning difficulties 11

23 51,049,645 51,066,637 17 (intron 5) Maternal - Dysmorphic, ?bronchiolitis 0

24 51,049,645 51,066,637 17 (intron 5) Maternal - Interuterine growth retardation,
pitting oedema, duplex right kidney,
undescended right testis, single
palmar creases

0

25 51,100,412 51,113,311 13 (intron 5) N.A. - Myoclonic epilepsy episodes since six
weeks of age

0

27 50,902,782 50,943,419 41 (intron 5) Paternal - Speech delay, social communication
difficulties

5

28 50,982,113 51,003,663 22 (intron 5) N.A. 22q11.21(18,896,971-21,377,825)x3
(22q11.2 duplication syndrome)

Autism 10

29 50,982,113 51,003,663 22 (intron 5) N.A. Dysplastic kidneys, ventral-septal
defect,cryptorchidism

0

30 50,918,448 50,933,351 15 (intron 5) Maternal 22q11.21(18,896,972-21,440,514)x3
dn (22q11.2 duplication syndrome)

Epilepsy with focal seizures 11
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Table 1 Deletions in the NRXN1 gene in clinical referrals for array CGH analysis in the present study (Continued)

31 50,943,360 50,957,514 14 (intron 5) N.A. - Learning difficulties, ADHD, autism 7

32 50,505,606 50,909,824 404 6-18 De novo - Developmental delay, severe
speech delay

5

26 50,775,890 51,037,163 261 6-10 De novo - Developmental delay, hypotonia,
speech delay

6

33 50,744,594 50,831,617 87 10-13 N.A. - Developmental delay 1

34 50,450,675 50,600,302 150 19 N.A. 8q23.3(113,960,008-114,131,155)x1
(CSMD3)

Developmental delay, autism 4

“Patient” refers to numbering in the text. “Inheritance” indicates if the imbalance was inherited (and if so from which parent, or de novo. N.A. is not assessed). Age
(yrs) is age at testing.
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phenotype correlation of NRXN1 deletions. Previously,
Rujescu et al. [21] described the detection of twelve
NRXN1 deletions in 2,977 patients with schizophrenia,
of which seven (0.24% of the patient population) were
exonic. These predominantly affected the 5’ exons of the
gene, consistent with ablation of the alpha-isoform being
the most common type of pathogenic mutation in
NRXN1. They also found that ~ 0.14% of normal controls
carried intronic NRXN1 deletions, and since this frequency
did not differ significantly from that of intronic deletions in
cases, they concluded that these were not likely to be
pathogenic. Subsequently, Ching et al. [10] reported 12 ex-
onic NRXN1 deletions in a group of 3,540 patients referred
for array CGH testing for a variety of different phenotypes,
giving a prevalence of 0.34% in this group. A further recent
study [29] described 24 patients with intragenic deletions of
NRXN1. Seventeen of these deletions involved exons of
NRXN1, including four cases with involvement of exons
encoding β-neurexin.
Figure 1 Deletions in the NRXN1 gene (HG19) in the present series. E
(NRXN1), transcript variant alpha2, mRNA NCBI Reference Sequence: NM_00
beta isoform, patients 1, 34.
In the present study, 18 deletions in the case series
were exonic (including two deletions which encompass
both the alpha and beta isoforms of NRXN1), and the
remainder intronic. The lower prevalence of exonic dele-
tions in our study group (0.17%) than that of other stud-
ies [10,20,21] may reflect the wide range of referral
indications in our cohort, and is very similar to the over-
all prevalence of 14/8798 (0.16%) calculated from com-
bining totals from a number of published studies of
schizophrenia [19].
The rate of intronic deletions we found in our case

sample is similar to that seen by Rujescu et al. [21], and
although approximately two thirds of our 13 patients with
“intronic only” NRXN1 deletions had overt neurodisability
phenotypes, this is most likely a result of the nature of the
clinical referral population, as about two-thirds of referrals
have this class of phenotype. For three of the patients
with intronic NRXN1 deletions in our cohort, a second
CNV was present (one Williams-Beuren deletion, and two
xons are numbered according to refseq (Homo sapiens neurexin 1
1135659.1). Two of our patients have deletions that overlap with the



Figure 2 Frequency of exonic deletions in the present series.
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22q11.2 duplications), likely to have been contributory
factors in their neurodisability.
However it is still possible that some intronic deletions in

NRXN1 are pathogenic through the deletion of essential
regulatory elements in the gene, such as alternative
promoters, enhancers, or sequences involved in the
complex splicing which generates various isoforms of
NRXN1 mRNA. For example, Iijima et al., [9] found
that alternative NRXN1 splicing (inclusion of the cassette
exon 20; this is exon 21 using the refseq numbering in
the present study) is dependent on the presence of
AU-rich recognition sequences for SAM68 and related
RNA-binding proteins in the flanking introns, and that
the deletion of these has functional consequences.
However we did not identify mutations encompassing
the exon-21 introns in the present study.
There are many examples of pathogenic intronic

deletions in the literature. For example intronic deletions
in the SLC34A3 gene cause hereditary hypophosphatemic
rickets with hypercalciuria [30], in the PKD1 gene
cause Rothmund-Thomson syndrome [31], and in the
dihydropyrimidine dehydrogenase gene cause 5-fluorouracil
toxicity [32]. Several mechanisms that could account for
this [33], including deletion of an unknown exon, deletion
of an alternative promoter and effects on regulatory se-
quences such as those controlling splicing, causing intron
retention, exon skipping and cryptic splice site activation
through the deletion of cis-acting elements, or constraining
the intron size to below that required for proper splicing
[34].
In the present study, while we did not find deletions

extending as far as the exon-21 flanking introns sequences,
our finding of intron 5 deletions in 14 affected individuals
is interesting. The potential importance of intron 5
deletions has previously been suggested by Ching and
colleagues, who reported a de novo intron 5 deletion in
an individual with PDD-NOS [10]. In order to show that
intron 5 deletions are pathogenic, a case–control analysis
and demonstration of the presence of functional sequence
would be required.
We also attempted to determine how many of the

NRXN1 mutations we found were de novo in origin. In
only eleven of our cohort could inheritance be established;
of these, four had apparently arisen de novo; however, the
neurocognitive status of the carrier parents of the other
seven patients was not known.
It has also become evident that a subset of patients

with neurodevelopmental disorders may have more than
one pathogenic mutation [35]. In the present study,
patient 11 had a paternally inherited contactin-associated
protein 2 (CNTNAP2) deletion in addition to a de novo de-
letion of exons 4 to 5 of NRXN1. CNTNAP2 is a member
of the neurexin superfamily, and deletions of CNTNAP2
have also been associated with NDDs [11,36]; it is therefore
entirely consistent that compromise of both NRXN1 and
CNTNAP2 would lead to a severe NDD, as seen in our
case (early-onset epilepsy, myoclonic seizures and speech
delay). Heterozygous deletions of either NRXN1 or
CNTNAP2 have been found to be associated with severe
intellectual disability [11]. Patient 34 had developmental
delay and autism, and in addition to an exon 19 NRXN1
deletion, also carried a chromosome 8 deletion resulting in
intragenic deletion of CSMD3, a gene whose function is
currently unknown, but which has been shown to be
expressed in adult and fetal brain [37]. Floris et al. [38] de-
scribed two patients with autistic disorder and balanced
translocations with breakpoints close to CSMD3 suggesting
that this is a candidate gene for autism. Apart from infants
less than 1 year old, only one patient (patient 15) had an ex-
onic deletion with no reported neurodevelopmental prob-
lems: this patient was tested for amenorrhea and
premature ovarian failure, and had a deletion of exons 4
to 5, suggesting that this specific deletion may not result
in fully penetrant functional compromise of NRXN1.
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Pleiotropy is also an important feature of most
pathogenic copy number mutations [39]. NRXN1 has
been associated with a wide range of disorders, including
schizophrenia, autism, epilepsy, and intellectual disability.
The reasons behind this phenotypic variability are un-
known; however, the presence of a second hit - mutations
in other genes in brain development pathways - is very
likely to modulate the effects of NRXN1 deletions, and
environmental factors may also play a part in the differen-
tial expression and penetrance of NDDs. Further insight
into this process will be obtained from genome sequencing,
which will be able to identify ‘second hits’ including point
mutations and other rare variants.

Conclusions
In the present study, we found a series of exonic deletions
in the NRXN1 gene in patients referred for clinical diag-
nostic cytogenetic analysis. These deletions were found in
patients with a range of neurodevelopmental disorders,
including attention deficit hyperactivity disorder (ADHD),
which until recently was not considered to have a genomic
basis. NRXN1, like all neurexins, has two main isoforms,
alpha and beta [4]. In common with other structural studies
of NRXN1, our series of deletions predominantly affect the
alpha isoform. Ullrich et al. [40] and Rowen et al. [41] have
suggested that the presence of alternative promoters and
the process of alternative splicing leads to the production of
many different NRXN1 proteins. The structure and
functional importance of these different proteins has
not yet been elucidated, and further information on the
phenotypic consequences, or lack thereof, of different
NRXN1 deletions is therefore essential to the under-
standing of NDDs, and thence to the processes leading
to normal brain development and function. Our data
adds a further 18 exonic and 16 intronic deletions to the
catalogue of previously published NRXN1 deletions.
Interestingly, we found a high frequency of intron 5
deletions in our cohort; this finding may be worthy of
further investigation.
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